Страниц: [1]
  Печать  
Автор Тема: Помогём Igorva18  (Прочитано 718 раз)
0 Пользователей и 1 Гость смотрят эту тему.
fortpost
Высший разум
****
Offline Offline

Сообщений: 6785

СПАСИБО
-вы поблагодарили: 1788
-вас поблагодарили: 2236



Просмотр профиля
: Ноябрь 14, 2016, 23:32:34

Добрый вечер. Не могли бы вы помочь с диффурами? Буду очень благодарен и признателен.
1) Найти частное решение ДУ и вычислить значение полученной функции y=q(x) при х=х0, с точность до двух знаков после запятой
y''=1/cos^2x, X0=П/3, у(0)=1, y'(0)=3/5
Ответ(2.69)
2) Найти общее решение ДУ допускающего понижение порядка
x^3y''+x^2y'=1 (Ответ: y=C1lnx+1/x+C2)
3) Найти общее решение ДУ
a)y''-4y'=0
б) y''-4y'+13y=0
в) y''-3y'+2y=0
Заранее большое спасибо )
Записан

Лучший способ оказаться в дураках, это считать себя умнее других. Ф. Ларошфуко
fortpost
Высший разум
****
Offline Offline

Сообщений: 6785

СПАСИБО
-вы поблагодарили: 1788
-вас поблагодарили: 2236



Просмотр профиля
Ответ #1 : Ноябрь 15, 2016, 00:01:39

1) Найти частное решение ДУ и вычислить значение полученной функции y=q(x) при х=х0, с точность до двух знаков после запятой
y''=1/cos2x, X0=П/3, у(0)=1, y'(0)=3/5
Ответ(2.69)

y' = ∫dx/cos2x = tgx + C1
y = ∫(tgx + C1)dx = -ln|cosx| + C1x + C2

y'(0) = tg0 + C1 = 3/5 → C1 = 3/5
у(0) = -ln|cos0| + C1∙0 + C2 = 1 → C2 = 1

y = -ln|cosx| + 3/5∙x + 1
y(π/3) = -ln|cos(π/3)| + 3/5∙π/3 + 1 = не оно  Huh?

Возможно, тут опечатка и y'(0)=3/π, тогда
y(π/3) = -ln|cos(π/3)| + 3/π∙π/3 + 1 = 2.69
Записан

Лучший способ оказаться в дураках, это считать себя умнее других. Ф. Ларошфуко
fortpost
Высший разум
****
Offline Offline

Сообщений: 6785

СПАСИБО
-вы поблагодарили: 1788
-вас поблагодарили: 2236



Просмотр профиля
Ответ #2 : Ноябрь 15, 2016, 00:48:09

2) Найти общее решение ДУ допускающего понижение порядка
x3y''+x2y'=1 (Ответ: y=C1lnx+1/x+C2)

y' = t
y'' = t'

x3t' + x2t = 1
t' + t/x = 1/x3

t' + t/x = 0
dt/dx = -t/x
dt/t = -dx/x
ln|t| = -ln|x| + ln|C|
t = C/x

t = C(x)/x
C'(x)/x - C(x)/x2 + C(x)/x2 = 1/x3
C'(x)/x = 1/x3
C'(x) = 1/x2
C(x) = ∫dx/x2 = -1/x + C1
t = -1/x2 + C1/x

y = ∫-dx/x2 + ∫C1dx/x = 1/x + C1ln|x| + C2

Эти пользователи сказали вам СПАСИБО :

☭-Изделие 20Д

За это сообщение 1 пользователь сказал спасибо!
Записан

Лучший способ оказаться в дураках, это считать себя умнее других. Ф. Ларошфуко
fortpost
Высший разум
****
Offline Offline

Сообщений: 6785

СПАСИБО
-вы поблагодарили: 1788
-вас поблагодарили: 2236



Просмотр профиля
Ответ #3 : Ноябрь 15, 2016, 23:50:34

3) Найти общее решение ДУ
a)y''-4y'=0

y' = t
y'' = t'

t' - 4t = 0
dt/t = 4dx
ln|t| = 4x + ln|C1|
t = C1e4x

y = ∫C1e4xdx = ¼∙C1e4x + C2
Последнее редактирование: Ноябрь 16, 2016, 18:55:01 от fortpost Записан

Лучший способ оказаться в дураках, это считать себя умнее других. Ф. Ларошфуко
☭-Изделие 20Д
Ум
*****
Offline Offline

Сообщений: 7807

СПАСИБО
-вы поблагодарили: 6174
-вас поблагодарили: 2422


[img] http://s016.radikal.ru/i337/1409/6a/5b2b5c71

614445846
Просмотр профиля Email
Ответ #4 : Декабрь 09, 2016, 21:35:40

Записан

Страниц: [1]
  Печать  
 
Перейти в: