Название: Правильная стратегия Отправлено: Илья от Май 22, 2010, 07:15:24 На окружности отмечено 2n >= 6 точек. Двое игроков ходят по очереди. На каждом ходе игрок должен провести хорду, соединяющую две точки и не пересекающуюся ни с одной из уже проведённых хорд. Проигрывает тот, кто не может сделать хода.
Какой игрок выигрывает при правильной игре? Название: Re: Правильная стратегия Отправлено: iPhonograph от Май 22, 2010, 08:35:47 первый
Название: Re: Правильная стратегия Отправлено: Илья от Май 22, 2010, 08:36:17 да.
Название: Re: Правильная стратегия Отправлено: iPhonograph от Май 22, 2010, 08:59:46 а если точек нечётное количество?
Название: Re: Правильная стратегия Отправлено: Илья от Май 22, 2010, 09:41:04 тоже первый
Название: Re: Правильная стратегия Отправлено: iPhonograph от Май 22, 2010, 09:53:03 ну пусть будет 5 точек
ходи первый Название: Re: Правильная стратегия Отправлено: Илья от Май 22, 2010, 10:13:46 (http://i047.radikal.ru/1005/40/3e3dd0d453bd.jpg) (http://www.radikal.ru)
Название: Re: Правильная стратегия Отправлено: iPhonograph от Май 22, 2010, 10:25:22 ну, теперь после любого моего хода у тебя ходов нет
ведь две хорды, имеющую общую вершину, считаются пересекающимися? Название: Re: Правильная стратегия Отправлено: Илья от Май 22, 2010, 10:29:27 "Ну, нет" - сказал король :)
Внутри круга. Название: Re: Правильная стратегия Отправлено: iPhonograph от Май 22, 2010, 11:20:54 ну, тогда согласен
|