4. (3x2tgy-2y3/x3)dx+(x3/cos2y+4y3+3y2/x2)dy=0
P(x,y)=3x2tgy-2y3/x3, Q(x,y)=x3/cos2y+4y3+3y2/x2
∂P/∂y=3x2/cos2y-6y2/x3
∂Q/∂x=3x2/cos2y-6y2/x3
∂P/∂y≡∂Q/∂x
∂U/∂x=3x2tgy-2y3/x3
∂U/∂y=x3/cos2y+4y3+3y2/x2
U(x,y)=∫(3x2tgy-2y3/x3)dx+φ(y)=x3tgy+y3/x2+φ(y)
∂U/∂y=x3/cos2y+3y2/x2+φ'y(y)
x3/cos2y+3y2/x2+φ'y(y)=x3/cos2y+4y3+3y2/x2 -> φ'y(y)=4y3
φ(y)=∫4y3dy=y4+C
U(x,y)=x3tgy+y3/x2+y4+C -> x3tgy+y3/x2+y4+C=0
|
Автор | Тема: Матан (Прочитано 14141 раз) |
| ||||||||||



Записан