15. y''+y=cosx+cos2x, y(0)=1, y'(0)=0
k2+1=0 -> k1=i, k2=-i
y0=C1cosx+C2sinx
y=C1(x)cosx+C2(x)sinx
C'1(x)cosx+C'2(x)sinx=0
-C'1(x)sinx+C'2(x)cosx=cosx+cos2x
C'1(x)=-sinxcosx-sinxcos2x
C'2(x)=cos2x+cosxcos2x
C1=∫(-sinxcosx-sinxcos2x)dx=1/2cos2x+1/6cos3x-1/2cosx+C11
C2=∫(cos2x+cosxcos2x)dx=x/2+1/4sin2x+1/2sinx+1/6sin3x+C12
y=(1/2cos2x+1/6cos3x-1/2cosx+C11)cosx+(x/2+1/4sin2x+1/2sinx+1/6sin3x+C12)sinx
y'=-1/2sinxcos2x-1/3sin3xcosx+1/3sinxcos3x+sinxcosx-C11sinx+1/2sinx+1/2xcosx-1/2sin3x+C12cosx
y(0)=1/2+1/6-1/2+C11=1 -> C11=5/6
y'(0)=C12=0 -> C12=0
y=(1/2cos2x+1/6cos3x-1/2cosx+5/6)cosx+(x/2+1/4sin2x+1/2sinx+1/6sin3x)sinx
|
Автор | Тема: Матан (Прочитано 14145 раз) |
| ||||||||||



Записан