Страниц: [1]
  Печать  
Автор Тема: Еще больше шаров  (Прочитано 2689 раз)
0 Пользователей и 1 Гость смотрят эту тему.
fortpost
Высший разум
****
Offline Offline

Сообщений: 6853

СПАСИБО
-вы поблагодарили: 1794
-вас поблагодарили: 2269



Просмотр профиля
: Январь 30, 2012, 22:41:31 �

Ящики расставлены в бесконечный в обе стороны ряд. В начальный момент в одном из ящиков лежит шар, а остальные ящики пусты. Имеется неограниченный запас шаров. Разрешено вынуть один шар из любого ящика, а взамен положить по одному шару в каждый из двух соседних с ним ящиков. После того, как неоднократно проделали эту операцию с шарами, в N подряд расположенных ящиках оказалось по одинаковому количеству шаров, а остальные были пусты. При каких N такое возможно?
Записан

Лучший способ оказаться в дураках, это считать себя умнее других. Ф. Ларошфуко
Валерий
Гений-Говорун
*
Offline Offline

Сообщений: 1395

СПАСИБО
-вы поблагодарили: 157
-вас поблагодарили: 235



Просмотр профиля
Ответ #1 : Январь 31, 2012, 09:54:03 �

Похоже здесь то же решение для N=5, и в каждом по 1 шару.

Другого пока не вижу  Huh?
Записан
Sirion
Гений-Говорун
*
Offline Offline

Сообщений: 1095

СПАСИБО
-вы поблагодарили: 137
-вас поблагодарили: 278



Просмотр профиля Email
Ответ #2 : Январь 31, 2012, 10:26:43 �

я владею няшным доказательством того,  что N не может быть кратно шести
Записан

sirion=irion+srion+rion+siion+iion+sion+ion+siron+iron+sron+ron+sion+ion+son+on+sirin+
+irin+srin+rin+siin+iin+sin+in+sirn+irn+srn+rn+sin+in+sn+n+sirio+irio+srio+rio+siio+
+iio+sio+io+siro+iro+sro+ro+sio+io+so+o+siri+iri+sri+ri+sii+ii+si+i+sir+ir+sr+r+si+i+s
Sirion
Гений-Говорун
*
Offline Offline

Сообщений: 1095

СПАСИБО
-вы поблагодарили: 137
-вас поблагодарили: 278



Просмотр профиля Email
Ответ #3 : Январь 31, 2012, 10:34:53 �

я уже владею няшным доказательством того, что N не может быть чётным
Записан

sirion=irion+srion+rion+siion+iion+sion+ion+siron+iron+sron+ron+sion+ion+son+on+sirin+
+irin+srin+rin+siin+iin+sin+in+sirn+irn+srn+rn+sin+in+sn+n+sirio+irio+srio+rio+siio+
+iio+sio+io+siro+iro+sro+ro+sio+io+so+o+siri+iri+sri+ri+sii+ii+si+i+sir+ir+sr+r+si+i+s
Sirion
Гений-Говорун
*
Offline Offline

Сообщений: 1095

СПАСИБО
-вы поблагодарили: 137
-вас поблагодарили: 278



Просмотр профиля Email
Ответ #4 : Январь 31, 2012, 15:01:05 �

Мои хитрые инварианты оказались не нужны =(

Пусть мы получили искомое состояние, когда в корзинах под номерами, скажем, от нуля до m содержится по n шаров, а в остальных - по нуль шаров. При этом изначальный шар находился в корзине под номером t (0<t<m). Обозначим за xi количество операций вынимания шара из i-той корзины. Очевидно, для i<=0 и i>=k  xi равняется нулю.

Пораскинув мозгами, получаем систему уравнений:

x1=n
-x1+x2=n
x2-x3+x4=n
....................
xt-1-xt+xt+1=n-1 (ы)
...............................
xm-1=n

Итого, у нас m уравнений на m-2 неизвестных. Мы можем выкинуть уравнение (ы) и из остальных найти все иксы (xt мы найдём аж двумя способами - допустим, что результаты получились одинаковые). При этом все иксы окажутся кратны n (легко доказывается по индукции). Теперь вернёмся к уравнению (ы) и узрим, что левая часть, кратная эн, оказывается равна n-1. Это возможно лишь при n=1 (если n натуральное, разумеется).

Таким образом, задача сводится к предыдущей.

Эти пользователи сказали вам СПАСИБО :

fortpost

За это сообщение 1 пользователь сказал спасибо!
Записан

sirion=irion+srion+rion+siion+iion+sion+ion+siron+iron+sron+ron+sion+ion+son+on+sirin+
+irin+srin+rin+siin+iin+sin+in+sirn+irn+srn+rn+sin+in+sn+n+sirio+irio+srio+rio+siio+
+iio+sio+io+siro+iro+sro+ro+sio+io+so+o+siri+iri+sri+ri+sii+ii+si+i+sir+ir+sr+r+si+i+s
fortpost
Высший разум
****
Offline Offline

Сообщений: 6853

СПАСИБО
-вы поблагодарили: 1794
-вас поблагодарили: 2269



Просмотр профиля
Ответ #5 : Февраль 01, 2012, 08:53:38 �

А-а-а -аблом! Абыднааа!  Sad
Записан

Лучший способ оказаться в дураках, это считать себя умнее других. Ф. Ларошфуко
Страниц: [1]
  Печать  
 
Перейти в: